

ANNEXURE 1: <u>Mandatory Requirements & Technical Evaluation Criteria</u>

1. Introduction

The intention of this document is to:

- Provide evaluation criteria for submissions of the High Temperature Low Sag (HTLS) conductor awareness workshops (theoretical classroom sessions and practical demonstrations)
- Submissions will be technically evaluated based on two criteria, that is mandatory information and functional requirements. Please refer to Section 3.1 for Table A.1 and Annexure A for Table A.2. Table A.1 indicates the Mandatory requirements, and the functionality requirements are indicated in Table A.2.

This note confirms that the technical evaluation for submissions of the HTLS conductor awareness workshops (theoretical classroom sessions and practical demonstrations) will be conducted in 2 stages:

- Stage 1: Evaluation of mandatory requirements (Section 3.1)
- Stage 2: Functional requirements Evaluation and scoring (Section 3.2.1 and Section 3.2.2)

2. Supporting clauses

2.1 Scope

The purpose of this document is to describe the criteria which are to be used when evaluating tender submissions for the HTLS conductor awareness workshops (theoretical classroom sessions and practical demonstrations)

2.1.1 Purpose

This document consists of the technical evaluation criteria on which suppliers will be assessed. Passing submissions will be considered technically compliant. A minimum score of 50% is required for suppliers to pass this phase of the project.

3. Technical Tender Evaluation Procedure

Section 3.1, Section 3.2.1 and Section 3.2.2 require responses from suppliers and will be evaluated accordingly. The technical evaluation procedure is specific to each type of high temperature low sag (HTLS) conductor. The items include, but are not limited to, composite cores, alloyed cores, steel core and high temperature mechanically compacted ACSR (plastically deformed) conductor technology submissions.

Note - A type of conductor technology is referring to the overall model of the conductor, including the core and stranding. Example; an HTLS conductor with a solid composite core and a concentric stranding is considered a different technology to the HTLS conductor with a solid core and trapezoidal stranding. Likewise, a solid composite core and a stranded composite core are considered different conductor technologies. The same is implied for alloyed core, steel core and high temperature mechanically compacted ACSR (plastically deformed) conductor technologies.

Section 3.1 refers to mandatory information. Supplier submissions with a "No" response to either one or all of the questions will be disqualified. Furthermore, omission of either one or all of the questions will also result in disqualification.

Section 3.2.1, information is to be submitted for a particular HTLS technology type **closest to 3** diameter equivalent conductors, ACSR Chickadee, IEC 315, and ACSR Tern conductors.

Section 3.2.2 focuses on a questionnaire for the submitted conductor technology.

In order to pass the technical assessment, the minimum score of 50% must be achieved for each of the functional assessment sections. That is, a minimum score of 50% for section 3.2.1 and a minimum score of 50% for section 3.2.2 is required. Submissions that do not meet the minimum required threshold of 50% for each section will be considered non-compliant.

Note: Suppliers are not limited to submit one type of HTLS conductor technology. Should suppliers provide different conductor technology submissions, sections 3.1, 3.2.1, and 3.2.2, for each technology submission will be evaluated independently. This implies that different conductor technology submissions will be evaluated and assessed individually and treated as separate submissions.

Evaluation Stages

The technical evaluation of any potential supplier will be in two stages for this phase of the project. **This two stage approach** will entail:

- 1. **The evaluation of the mandatory responses**. Suppliers who submit this information will thereafter proceed to the functional scoring assessment. Omission of mandatory information will result in disqualification.
- 2. **Evaluation of functional requirements and scoring.** A minimum score of 50% is required for section 3.2.1 and a minimum score 50% is required for section 3.2.2, for successful candidates. Passing submissions will be considered **technically compliant.**

During this process, the tender documentation submitted by **potential suppliers are evaluated against the criteria listed in Table A.1 (Section 3.1), Table A.2 and Table A.3 outlined in Annexure A of this report**. Sections 3.1, 3.2.1 and 3.2.2 are indicated in this document. The Eskom evaluating representatives will go through the details of the returnable submissions that are required and will, firstly, ensure that the mandatory criteria are met. Omission of Mandatory information will result in disqualification. The supplier/s will thereafter not proceed to the functional scoring assessment.

Returnable information and Mandatory list

3.1 Mandatory Requirements

In order for the suppliers to progress to the functional scoring assessment, mandatory information indicated in Table A.1 must be provided. **Please refer to Table A.1 for information on mandatory requirements.**

Table A.1 – Mandatory Information

Column 1	Column 2	Column 3
	Yes/No	If Yes to Column 2
1.1 Is information on the construction processes when installing the conductor available?		Please provide detailed information on the processes, such as the use of running blocks and pulleys. Submission of a stringing and regulating method statement is advised. The method statement must clearly describe the construction process when installing the conductor, from start to the end of construction.
		Please provide the following information as part of the stringing and regulating method statement:
If Yes please refer to		 Correct equipment to be used such as tensioner, drums, running blocks, nulley and nilot wires.
Column 3.		 pulley and pilot wires. Diagrams of the suggested positioning of conductor drums behind the tensioner, maximum angle of deviation (offset angle) between center line of tensioner and conductor drums, distance between drums and tensioner etc. Details on the regulation / clamping in of conductor to the tower (dead – ending of the conductor) Recommended pulling speed during stringing. Technical details for tensioner and puller, including braking operation during stringing. Details on the pilot wires that can be used for the different types of conductors. Drawing showing the attachment of the pilot wire to the conductor bundle, including the pulling sock and swivel Note : When providing information on stringing and regulating, please make reference to the tower outline drawings attached in the Annexure B of the department.
		the guyed towers (520B Guyed Vee and 529C cross rope structures)
1.2 Is there information on the installation methods of the conductor? This includes installation processes for the conductor to conductor and conductor to hardware jointing processes. Jointing processes for the core and stranding to be provided		 If yes, please provide specifications and methods for installation. Please provide the following information as part of the specification: Drawings for: mid span joints, compression dead-ends, spacer dampers and clamps. Information on bolted and/or preformed type, rigid spacers for jumpers, repair sleeves etc. must also be provided. Material used for manufacture. Mechanical strength of end fittings Any special inserts required for end – fittings.
If Yes please refer to		
Column 3.		

3.2 Functional Assessment – Technical evaluation

Sections 3.2.1 and Section 3.2.2 includes the functional requirements. Should the Mandatory requirements be met, submissions will be evaluated based on responses to Section 3.2.1 (Table of inputs) and Section 3.2.2 (Questionnaire). Please refer to Annexure A, Table A.2 for the evaluation criteria of the functional requirements.

3.2.1 Table Inputs

Please provide the following information:

Description: Eskom requires information on HTLS conductors that can match or are closest in diameter size to the conventional ACSR conductors. The ACSR conductors and their diameters that are mentioned in row 1 of **Table A3.**, Error! Reference source not found. Error! Reference source not found. and Error! Reference source not found. are:

- ACSR Chickadee 18.87 mm
- ACSR IEC 315 23.90 mm
- ACSR Tern 27.00 mm

Table A3. refers to information required for HTLS *composite core conductors*, Error! Reference source not found. refers to *alloyed core conductors* and Error! Reference source not found. refers to *steel core conductors* and Table A.3.2.4 refers to the high temperature mechanically compacted ACSR (plastically deformed) conductor technology. Please populate the tables with the relevant HTLS conductor information. The HTLS conductor should be equivalent to or closest in diameter size to the ACSR/IEC conductor diameter mentioned in the column heading of the table. The required stranding information is also indicated in the column heading of the tables.

Example – An HTLS diameter equivalent conductor to ACSR Tern should have a diameter close to 27.00 mm. The information for the diameter equivalent HTLS conductor should be provided.

Ampacity ratings – Information to be provided based on the weather conditions provided (page 18)

*This is the maximum amount of current that a conductor can handle under normal continuous operation. The following deterministic weather conditions have to be considered, for the calculation of a rating at 75° C, 90° C and 150°C. Please indicate what the maximum operating temperature that the conductor is rated for and indicate the weather condition parameters used to obtain this rating.

Weather Conditions to be used for ampacity rating calculations at 75°C, 90°C and 150°C

Diameter equivalent conductors

This refers to the overall outer diameter of the conductor, which mostly serves as an input to wind loading calculations on a tower, but also has a bearing on the corona performance.

Table A3.2.1 Composite core conductors

Overall diameter	18.87	18.87	18.87	18.87	23.90	23.90	23.90	23.90	27.00	27.00	27.00	27.00	Comments
in mm				Other states of			Ourse she sh	Otres and a d					
l ype of	Solid core,	Solid core	Stranded	Stranded	Solid core,	Solid core	Stranded	Stranded	Solid core,	Solid core	Stranded	Stranded	
Cole	Concentric	Trapezoidal	core,	COIE	Concentric	Trapezoidal	core,	COIE	Concentric	Trapezoidal	core,	core	
and stranding	stranding	stranding	Concentric	Trapezoidal	stranding	stranding	Concentric	Trapezoidal	stranding	stranding	Concentric	Trapezoidal	
5	5	J	stranding	stranding	J	5	stranding	stranding	S	5	stranding	stranding	
IEC Code													
Composite core equivalent conductor													
Conductor overall diameter (mm)													
Core diameter (mm) and strand diameter (if applicable)													
Aluminum strand diameter (mm)													
Total Area (mm ²)													
Area of core or composite (mm ²)													
Area of Aluminium (mm ²)													
Total mass (kg/km)													
Mass of core (kg/km)													
Mass of Aluminium (kg/km)													
UTS (Kn)													
Roughness factor if available													
Ampacity Rating * 75° 90° 150° Max operating temp													

*Please refer to section 3.2.1, page 5. Ampacity ratings to be calculated based on the environmental conditions provided.

Mechanical							
inputs/ PLS Cad							
inputs							
ALCAN chart							
Final modulus of							
elasticity of outer							
strands(Mpa/100)							
Final modulus of							
elasticity of core							
(Mpa/100)							
coefficient for outer							
strands (/100 °)							
Thermal expansion						 	
coefficient for core							
(/100 °)							
Polynomial							
stress-strain in							
outer strands.							
Strain in %. Stress							
in Mpa.							
a_0, a_1							
<i>u</i> ₂ , <i>u</i> ₃							
Polynomial							
coefficients for							
core Strain in %							
Stress in Mpa.							
b_0, b_1							
b_2, b_2							
roiynomiai							
creep in outer							
strands. Strain in							
%. Stress in Mpa.							
<i>C</i> ₀ , <i>C</i> ₁							
C ₂ ,C ₃							

Table A3.2.2- Alloyed core conductors

0	verall diameter	18.87	18.87	18.87	18.87	23.90	23.90	23.90	23.90	27.00	27.00	27.00	27.00	Comments
ir L	n mm	Solid core	Solid core	Stranded	Stranded	Solid core	Solid core	Stranded	Stranded	Solid core	Solid core	Stranded	Stranded	
C	Core			core,	core			core,	core			core,	core	
	e di e tana a d'ana	Concentric	Trapezoidal	0	Tana ana islah	Concentric	Trapezoidal		Transitial	Concentric	Trapezoidal	0	Tana ana islal	
ar	nd stranding	stranding	stranding	stranding	stranding	stranding	stranding	stranding	stranding	stranding	stranding	stranding	stranding	
IE	C Code			otranang	otranang			otranding	otranang			otranang	otranding	
_														
C	omposite core													
c	onductor													
C	onductor overall													
dı	ameter (mm)													
C (n	ore diameter													
di	ameter (if													
a	oplicable)													
A	luminum strand													
dı	ameter (mm)													
Т	otal Area (mm ²)													
A	rea of core or													
CC	omposite (mm ²)													
A	rea of													
A	luminium (mm²)													
(k	otal mass (g/km)													
M	lass of core													
(k	(g/km)													
M	lass of													
A (k	iuminium (a/km)													
U	TS (Kn)													
R	oughness factor													
if	available													
Δ	mnacity Rating *													
75	5°													
90	D°													
15	50°													
M te	ax operating													
	411117													

*Please refer to section 3.2.1, page 5. Ampacity ratings to be calculated based on the environmental conditions provided.

Mechanical							
inputs/ PLS Cad							
inputs							
ALCAN chart							
equivalent							
Final modulus of							
elasticity of outer							
strands(Mpa/100)							
Final modulus of							
(Mpo/100)							
(ivipa/100) Thormol		 				 	
evnansion							
coefficient for							
outer strands							
(/100 °)							
Thermal							
expansion							
coefficient for							
core (/100 °)							
Polynomial							
coefficients for							
stress-strain in							
outer strands.							
Strain in %.							
Stress in Mpa.							
a_0, a_1							
a_2, a_3							
Polynomial						 	
coefficients for							
stress-strain in							
the core Strain in							
%. Stress in Mpa							
$b_0.b_1$							
b_2, b_2							
Polynomial							
coefficients for							
creep in outer							
strands. Strain in							
%. Stress in Mpa.							
<i>c</i> ₀ , <i>c</i> ₁							
C2.C2							

Polynomial							
coefficients for							
creep in the core.							
Strain in %.							
Stress in Mpa.							
d_0, d_1							
d_2, d_3							
Thermal ratings							
DC resistance at							
20°C(ohm/km)							
DC Resistance at							
180°C (ohm/km)							
DC Resistance at							
200°C(ohm/km)							
Emissivity							
coefficient							
Solar absorption							
coefficient							
Core heat							
capacity (Watt-							
s/m-°C)							
Outer strands							
heat capacity							
(Watt-s/m-°C)							

Table A3.2.3 – Steel core conductors

Overall diameter	18.87	18.87	18.87	18.87	23.90	23.90	23.90	23.90	27.00	27.00	27.00	27.00	Comments
in mm	0			Other states of			Ourse she sh	Otras a da d		0		Ourse de d	
l ype of	Solid core,	Solid core	Stranded	Stranded	Solid core,	Solid core	Stranded	Stranded	Solid core,	Solid core	Stranded	Stranded	
Cole	Concentric	Trapezoidal	core,	COIE	Concentric	Trapezoidal	core,	COIE	Concentric	Trapezoidal	core,	core	
and stranding	stranding	stranding	Concentric	Trapezoidal	stranding	stranding	Concentric	Trapezoidal	stranding	stranding	Concentric	Trapezoidal	
, S	5	5	stranding	stranding	5	J	stranding	stranding	5	, S	stranding	stranding	
IEC Code													
Composite core equivalent conductor													
Conductor overall diameter (mm)													
Core diameter (mm) and strand diameter (if applicable)													
Aluminum strand diameter (mm)													
Total Area (mm ²)													
Area of core or composite (mm ²)													
Area of Aluminium (mm ²)													
Total mass (kg/km)													
Mass of core (kg/km)													
Mass of Aluminium (kg/km)													
UTS (Kn)													
Roughness factor if available													
Ampacity Rating * 75° 90° 150° Max operating temp													

*Please refer to section 3.2.1, page 5. Ampacity ratings to be calculated based on the environmental conditions provided.

Mechanical							
inputs/ PLS Cad							
inputs							
ALCAN chart							
equivalent							
Final modulus of							
elasticity of outer							
strands(Mpa/100)							
Final modulus of							
(Mpo/100)							
(ivipa/100) Thormol		 				 	
evnansion							
coefficient for							
outer strands							
(/100 °)							
Thermal							
expansion							
coefficient for							
core (/100 °)							
Polynomial							
coefficients for							
stress-strain in							
outer strands.							
Strain in %.							
Stress in Mpa.							
a_0, a_1							
a_2, a_3							
Polynomial						 	
coefficients for							
stress-strain in							
the core Strain in							
%. Stress in Mpa							
$b_0.b_1$							
b_2, b_2							
Polynomial							
coefficients for							
creep in outer							
strands. Strain in							
%. Stress in Mpa.							
<i>c</i> ₀ , <i>c</i> ₁							
C2.C2							

Polynomial							
coefficients for							
creep in the core.							
Strain in %.							
Stress in Mpa.							
d_0, d_1							
d_2, d_3							
Thermal ratings							
DC resistance at							
20°C(ohm/km)							
DC Resistance at							
180°C (ohm/km)							
DC Resistance at							
200°C(ohm/km)							
Emissivity							
coefficient							
Solar absorption							
coefficient							
Core heat							
capacity (Watt-							
s/m-°C)							
Outer strands							
heat capacity							
(Watt-s/m-°C)							

Table A3.2.4 - High temperature mechanically compacted ACSR (plastically deformed) conductor technology

Overall diameter	18.87	18.87	18.87	18.87	23.90	23.90	23.90	23.90	27.00	27.00	27.00	27.00	Comments
in mm	0				0				0				
Type of	Solid core,	Solid core	Stranded	Stranded	Solid core,	Solid core	Stranded	Stranded	Solid core,	Solid core	Stranded	Stranded	
Core	Concentric	Trapezoidal	core,	core	Concentric	Trapezoidal	core,	core	Concentric	Trapezoidal	core,	core	
and stranding	stranding	stranding	Concentric	Trapezoidal	stranding	stranding	Concentric	Trapezoidal	stranding	stranding	Concentric	Trapezoidal	
Server Server and S	g		stranding	stranding	g	g a church a	stranding	stranding			stranding	stranding	
IEC Code													
Composite core													
equivalent													
conductor													
diameter (mm)													
Core diameter													
(mm) and strand													
diameter (if													
Aluminum strand													
diameter (mm)													
Total Area (mm ²)													
Area of core or composite (mm ²)													
Area of													
Aluminium (mm ²)													
Total mass													
(kg/km)													
Mass of core													
(Ky/KIII) Mass of	-	+			-			+	+				+
Aluminium													
(kg/km)													
UTS (kN)													
Roughness factor	T	T			T		Ì	T	T		Ì		T
if available													
Ampacity Rating *													
/5 00°													
90 150°													
Max operating													
temp													

*Please refer to section 3.2.1, page 5. Ampacity ratings to be calculated based on the environmental conditions provided

Polynomial							
coefficients for							
Stroip in the core.							
Strain in %.							
Stress in MPa.							
a_0, a_1							
a_2, a_3							
Thermal ratings							
DC resistance at							
20°C(ohm/km)							
DC Resistance at							
180°C (ohm/km)							
DC Resistance at							
200°C(ohm/km)							
Emissivity							
coefficient							
Solar absorption							
coefficient							
Core heat							
capacity (Watt-							
s/m-°C)							
Outer strands							
heat capacity							
(Watt-s/m-°C)							

Mechanical inputs/ PLS Cad inputs							
ALCAN chart equivalent							
Final modulus of elasticity of outer strands(MPa/100)							

MANDATORY AND TECHNICAL EVALUATION CRITERIA

Final modulus of							
olacticity of coro							
(IVIPa/100)							
Inermai							
expansion							
coefficient for							
outer strands							
(/100 °)							
Thermal							
expansion							
coefficient for							
core (/100 °)							
Polynomial							
coefficients for							
stress-strain in							
outor otrondo							
Outer Strainus.							
Strain in %.							
Stress in MPa.							
a_0, a_1							
a_2, a_3							
D						 	
Polynomial							
coefficients for							
stress-strain in							
the core. Strain in							
%. Stress in MPa.							
b_0, b_1							
b_{2}, b_{2}							
Polynomial							
coefficients for							
creep in outer							
strands. Strain in							
%. Stress in MPa.							
Co.C1							
02,03							

3.2.2 Questionnaire

Mechanical information

- 3.2.2.1 Populate Section 3.2.1 of the report and provide cable files to be used in software programs used to calculate creep and sag? If this cannot be provided now, will the supplier provide this information to Eskom if they are successful and nominated by Eskom to provide HTLS conductor awareness workshops (theoretical classroom sessions and practical demonstrations)
- 3.2.2.2 Does the core of the conductor require the use of standard ACSR hardware and fittings or are different hardware and fittings required?
- 3.2.2.3 Indicate the type of grease used for hardware attachments?
- 3.2.2.4 What detection methods should be used or followed to determine the mechanical integrity of the conductor once installed? Parameters to be checked include (but is not limited to) corrosion, internal damage due to conductor mechanical vibration etc.
- 3.2.2.5 What are the proposed methods of condition monitoring of the conductor? State the estimated lifespan of the conductor and under what conditions is this based on?
- 3.2.2.6 What are the recommended gripping technologies to be used during different stringing activities if the conductor needs to be pulled to the correct tension during regulating? As an example; provide guidelines for construction clamps to be used and how they differ compared to equipment used for ACSR conductors.
- 3.2.2.7 What are the handling characteristics to adhere to in terms of bending radius and tension compared to ACSR conductor?
- 3.2.2.8 Are the repair procedures for the conductors different to that of ACSR? Please provide supporting documentation.
- 3.2.2.9 When routine tensile tests are performed on Eskom conductors the guidelines of IEC 61089 are followed. Do we continue following the same specification for HTLS conductor, alternatively provide the relevant specification(s) to be used?
- 3.2.2.10 Provide confirmation of compatibility of conductor and hardware for electrolytic corrosion when exposed to marine pollution to at least C5 corrosion level. Please refer to ISO12944.
- 3.2.2.11 Please provide historical documentation or references from utilities regarding the performance and maintenance of the conductor? Maintenance procedures to be clearly indicated.

• Electrical information

- 3.2.2.12 Has the conductor been tested for corona performance? If yes, please provide test reports stating which conductor surface temperatures and environmental conditions the tests were conducted at. Also, what was the maximum conductor electric field surface gradient (kV/cm)?
- 3.2.2.13 If available, please provide the roughness factor for the conductor.

• Test reports and standards

- 3.2.2.14 Have the conductors been tested in an independent accredited testing laboratory? Certificate to be provided.
- 3.2.2.15 Show evidence of Type testing of the HTLS conductor in accordance to applicable IEC standards. Latest type test report to be submitted.
- 3.2.2.16 Show evidence of Sample testing of the HTLS conductor on each individual product in accordance to applicable IEC standards. Sample test report to be submitted.
- 3.2.2.17 Show evidence of Production testing of the HTLS conductor on each individual product in accordance to applicable IEC standards. Production sample test report to be submitted.
- 3.2.2.18 Show evidence of material checking and verification from raw to final product stages. Report or certificate to be provided.

If standards other than IEC have been used, please provide this information. If possible, attach test certificates.

Construction Information

- 3.2.2.19 Provide transportation and handling requirements for the conductors.
- 3.2.2.20 Please include minimum storage protocols for the conductors when being stored on site before use.
- 3.2.2.21 Please include lifespan of conductors being stored in drums and provide damage mitigation measures to the core and strands?
- 3.2.2.22 Specify drum material type (wood, steel or either), and whether the drums can be stored outside, exposed to weather elements.
- 3.2.2.23 Is the disposal of the HTLS type of conductor different to the disposal of ACSR conductors? If yes, please indicate the process that should be followed.
- 3.2.2.24 Indicate the requirements/certification required by individuals that partake in the construction activities? Please indicate the training and accreditation process to be followed.

• Manufacturing (For information purposes only, not to be scored)

- 3.2.2.25 Are the conductors manufactured in South Africa? Please indicate if the core and/or the conductive strands are manufactured/ produced in South Africa or if either needs to be imported? Please indicate the names of suppliers used in either case?
- 3.2.2.26 Has the organization previously conducted training on conductor installation processes and construction activities for South African contractors/installers?
- 3.2.2.27 Is there a facility in South Africa that does the conductor stranding? If not, please advise how this service will be provided?
- 3.2.2.28 What is the lead time for delivery? What are the possible risks that could impact the lead time?

3.3 Summary of Conductor Evaluation

- Submissions will first evaluated for Mandatory requirements, this is indicated in Table A.1 (Section 3.1). Should the mandatory requirements be met, the submissions will be assessed on the functional requirements. Functional requirements are indicated in Section 3.2.1 and Section 3.2.2. Table A.2 in Annexure A refers to the evaluation criteria of the functional requirements.
- Mandatory information should include the submission of a specification including installation methods and processes for the conductor and hardware jointing. A stringing and regulating methodology document to be submitted. Table A.1 provides further details.

The functional requirements should consist of but not be limited to:

- Submission of electrical inputs requested for either Tables A.3.2.1, A.3.2.2, A.3.2.3 or A.3.2.4 of section 3.2.1.
- Submission of mechanical inputs and cable files for either Tables A.3.2.1, A.3.2.2 , A.3.2.3 or A.3.2.4 of section 3.2.1.
- Submission of thermal inputs requested for either Tables A.3.2.1, A.3.2.2, A.3.2.3 or A.3.2.4 of section 3.2.1.
- Suppliers are not limited to providing one type of conductor submission. Different conductor technologies will be evaluated independently.
- Suppliers are expected to provide clear responses to all questions in section 3.2.2. Where indicated, supporting documents to be provided.
- Test reports, as part of the electrical and mechanical questionnaire, to be submitted. Standards followed to be provided.
- An indication of the manufacturing location and lead times to be provided (Eskom information purposes).

Note – Different technical responses may be submitted for different conductor technologies. Please provide information describing the technology. If a supplier submits different conductor technologies, the supplier should complete all sections for each type of technology. Eskom will evaluate the different technologies independently. The evaluation process will be followed.

Annexure A – Technical Evaluation scoring criteria

Table A.2 - Technical Evaluation Criteria

ltem	Section Number	Description	Criteria	Total Score /Section	Breakdown of Scoring (Based on the submission of 1 type of conductor technology
			Information provided for either table A.3.2.1, A.3.2.2, A.3.2.3, A.3.2.4		19.5 points (0.5 points per input , 6.5 points for submission of 13 inputs for 1 diameter equivalent conductor type, 19.5 points for submission of 3 diameter equivalent conductor types)
1.1 Section 3.2.1		Electrical Inputs	Ampacity ratings submitted using the provided weather conditions.	25.5	6 points (0.5 points for each ampacity rating input, 2 points for 1 diameter equivalent conductor type , 6 points for submission of 3 diameter equivalent conductor inputs). Suppliers submitting inputs without using the Eskom environmental requirements will receive a score of 0.
1.2	Section 3.2.1	Mechanical Inputs	Mechanical inputs - Provision of Mechanical inputs and submission of cable files.	13.5	13.5 points (0.5 points per input , 4.5 points for submission of 9 inputs for 1 diameter equivalent conductor type, 13.5 points for submission of 3 diameter equivalent conductor types).
1.3	Section 3.2.1	Thermal Inputs	Thermal ratings	10.5	10.5 points (0.5 points per input , 3.5 points for submission of 7 inputs for 1 diameter equivalent conductor type, 10.5 points for submission of 3 diameter equivalent conductor types)
	Maximum	Score for Section	3.2.1	49.5	
			Responses		20 points (2 points per response, excluding Question 3.2.3.11)
1.4	Section 3.2.2	Mechanical Questionnaire	For 3.2.3.11 Please provide historical documentation or references from utilities regarding the performance and maintenance of the conductor. Maintenance procedures to be clearly indicated.	24.5	4.5 points (1 point for each reference letter, maximum 3 points) (1.5 points for maintenance procedures)
1.5	Section 3.2.2	Electrical Questionnaire	Responses	4	2 points per response
1.6	Section 3.2.2	Test reports and standards Questionnaire	Provision of test reports	10	10 points (2 point for each question, that is 1 point per response and 1 point for the submission of the supporting report or certificate per question)
1.7	Section 3.2.2	Construction Questionnaire	Responses	12	12 points (2 points per response)
1.8	Section 3.2.2	Manufacturing Questionnaire	This is for Eskom information. It is not a mandatory and the supplier will not be scored on this.		Information purposes
	Maximum	Score for Section	3.2.2	EQ E	
	Maximum Score	e for Sections 3.2.1	and 3.2.2	100	

Assessment Methodology

The assessment will only be conducted:

- If the mandatory requirements indicated in section 3.1 have been met, sections 3.2.1 and 3.2.2 will be evaluated.
- In order to pass the technical assessment, the minimum score of 50% must be achieved for each of the requested sections. That is, a minimum score of 50% for section 3.2.1 and a minimum score of 50% for section 3.2.2 is required. Submissions that do not meet the minimum required threshold of 50% for each section will be considered non-compliant.
- Once the evaluation assessment is complete, suppliers will be considered technically compliant.

Table A.3 - Technical Scoring Assessment summary

Item	Section Number	Description	Final Scoring/Desktop	Scoring /Section	Criteria	
3.1	Section 3.1	Mandatory Information	Submitted or Not submitted	Yes/No	Must submit mandatory information in order to proceed	
.1		Electrical Inputs	Acceptably submitted/submitted	25.5	Must meet 50%	
1.2	Section 3.2.1	Mechanical Inputs	Acceptably submitted/submitted	13.5	threshold to	
1.3		Thermal Inputs	Acceptably submitted/submitted	10.5	proceed	
1.4		Mechanical Questionnaire	Acceptably submitted/submitted	24.5		
1.5		Electrical Questionnaire	Acceptably submitted/submitted	4	Must meet 50%	
	Section 3.2.2	Test reports and Standards	Acceptably submitted/submitted	10	proceed	
1.6		Construction Questionnaire	Acceptably submitted/submitted	12		
1.8		Manufacturing Questionnaire	Information Purposes	N/A	N/A	
		Total	100			
	Overall n	ninimum threshold	50			

Annexure B – Tower Drawings

Figure B.1: 518H Self-support suspension structure outline drawing

Figure B.2: 518C Self-support strain structure outline drawing

Figure B.3: 520B Guyed Vee structure outline drawing

Eskom

Figure B.4: 529C Guyed Cross rope structure outline drawing

